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CRITICAL STRESS OF THIN-WALLED CYLINDERS IN AXIAL COMPRESSION

By 3. B. BaTporF, MURRY SCHILDCROUT, and MANUEL STEIN

SUMMARY

Empirical design curves are presented for the critical stress of
thin-walled cylinders loaded in axial compression. These
curves are plotied in terms of the nondimensional parameters of
small-deflection theory and are compared wiih theoretical curves
derived for the buckling of eylinders with simply supported and
clamped edges. An empirical equation is given for the buckling
of eylinders having a length-radius ratio greater than about 0.75.

The test data obtained from various sources follow the general
trend of the theoretical curve for eylinders with clamped edges,
agreeing closely with the theory in the case of short eylinders, but
falling considerably below the theoretical resulis for long
eylinders. The discrepancy in the case of long cylinders increases
with increasing ralues of the ratio of radius to wall thickness.
Plotting curves for different values of this ratio reduces the
scafter in the test data and a ceriain degree of correlation with
theory s achiered. Adraniage is taken of this correlation to
obtain estimated design currves for cylinders with simply sup-
ported edges, for which little experimental information is
available.

REVIEW OF PREVIOUS WORE ON PROBLEM

Solutions to the problem of the determination of the eritical
stress of thin-walled cylinders subjected to axial compression
have been presented by a large number of authors. South-
well, Timoshenko, Fliigge, and numerous other authors
have obtained theoretical solutions by the use of the small-
deflection theory. (See, for example, references 1to4.) The
value given by the small-deflection theory for the buckling
stress of a thin-walled eylinder of moderate length having
simply supported edges is

az=)ﬁ=0.608% (1)
where
o, critical compressive stress
E  Young's modulus

¢ wall thickness of eylinder

r  radius of evlinder

¢ Poisson’s ratio (in the present paper g is taken to be
0.316 whenever a value is assigned to it)

Experiments (references 5 to 10) have shown that the
actual critical stress is much lower than that predicted by
equation (1). Except in the case of short eylinders, the
experiments usually give values only 15 to 50 percent of that

predicted theoretically; moreover, the observed buckle pat-
tern is different from that predicted on the basis of theory.
A number of attempts have been made to explain these dis-
crepancies theoretically. Fliigge (reference 3) considered the
deviation of the actual edge supports from the support con-
ditions assumed in the theoretical treatment. Donnell
(reference 5) and also Fligge considered the initial deviation
from the perfect cylindrical shape. Neither of the two
attempted explanations satisfactorily acecounts for the dis-

crepancy existing between the theoretical and experimental

values of the buckling stresses of cylinders.

Von Kérmén and Tsien (reference 11) introduced a large- N

deflection theory to account for the buckling behavior of
long cylinders. They showed that a long eylinder can be in
equilibrium in a buclkled state at a stress that is much smaller
than the critical stress of small-deflection theory and also
succeeded in accounting for the buckle pattern observed in
the early stages of buckling. Reference 11 suggested that
when a cylinder has an initial imperfection or is subjected to
a shock, it might pass into one of these buckled states with-
out ever having reached the critical load given by equa-
tion (1). Based on the same approach, a theory for the
buckling stresses of perfect cylinders was proposed by Tsien
(reference 12), which gave for loading by rigid screw-power

testing machine

a,=0.370 Et
r

(2

and for loading by ideal hydraulic testing machine or dead
weight

,=0.238 E%t

(3)

The large-deflection theories fail in two respects to describe
adequately the buckling behavior of actual cylinders. First,
the theories are formulated only for long cylinders; equations
(2) and (3) seriously underestimate the critical stress of very
short cylinders. Second, even for long cylinders, attempts to
determine experimentally the numerical coefficient ¥ in the
buckling formula

5
o= CTE; (4)
have resulted in appreciable experimental seatter. The
experimental scatter is due at least in part to the initial imper-

fections of construction always present in real cylinders.
(See fig. 1.}
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FiotURE 1.—Effect of initial defects upon the maximum compressive loads of struts and eylinders.

In the absence of a complete and satisfactory theoretical
solution for the critical stress of cylinders, a number of
authors have proposed empirical formulas derived from test
data (references 6 to 8). One such formula, which takes into
account the length of the eylinder, is due to Ballerstedt and
Wagner (reference 8):

%=33 G:)ZJFM G) (5)

The first parameter in this equation (%) is appropriate for
flat sheet and the second parameter fi is included to take

into account the effect of curvature. More recently
Kanemitsu and Nojima (reference 9) compiled all available
previous experimental results and conducted a number of
tests of their own. The formula of Wagner and Ballerstedt
was modified in reference 9 to bring it into better agreement
with experiment as follows:

or_ l: 1.3‘ i 1.6
%=0.16 (L) +9 (;) (6)
e s . . L
Within its range of application 0'1<F<1'5;
500 = z éBOO’O) equation (8) is in considerably better agree-

4

ment with experiment than equation (5) but, because of
the change in the exponents of the parameters, equation (6)
does nol have any rational basis and must be regarded as
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(From reference 13, fig. 18.)

purely empirical. A complete divorce of theory and ex-
periment, however, cannot be regarded as a satisfactory per-
manent settlement of the problem, and the present report
attempts to bring theory and experiment into reasonable
accord.

CONTRIBUTION OF PRESENT PAPER

In the present paper the available test data for critical
stresses of cylinders are reexamined and theoretical results
are used as a guide in fairing the curves, in extending the
range of validity of the existing empirical results, and in
achieving & more rational interpretation of the test data,
Faor this purpose the test data are plotted in terms of the
parameters of cylinder theory and are compared with theo-
retical results derived in the appendix on the basis of small-
deflection theory.

The cylinder-theory parameters used are

atL?
k= Dre
and
L2
Z=E T—ut
where

3
D flexural stiffness of plate per unit length (1—7?{“3))

length of eylinder
curvature parameter
eritical stress coefficient appearing in
koD
=TI

N

the cquation
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The experimental data are used as the prineipal guide in
determining the critical compressive stresses of long cylinders
(large values of Z) and the theoretical results are used mainly
to supplement the test data in determining the critical stress
of very short cylinders (small values of Z). The experimental
scatter is reduced by presenting different curves for cylinders
with different values of the ratio of radius to wall thickness
on the assumption that for long cylinders this ratio furnishes
some indication of the initial imperfections of the cylinder.
Although these curves were determined partly on the basis of
theoretical considerations, they are for convenience referred
to herein as empirical curves.

RESULTS AND CONCLUSIONS

The critical compressive stress for cylinders is given by
the equation

trz=‘{—f£2tz—) (7
where the values of %, may be obtained from figure 2 for
cylinders with either clamped or simply supported edges.
The design curves for cylinders with clamped edges are
established by the test results reported in references 5 to 9.
(See fig. 3.) Each curve was faired through a series of
test points which were plotied for cylinders with nearly
the same ratio of radius to wall thickness r/t. The estimated
(dashed) parts of the design curves for simple support were

obtained by fairing between the known experimental curves

for long cylinders (large values of Z), which according to
theory should be the same whether the eylinders have
simply supported or clamped edges, and the theoretical
curves for very short cylinders (small values of Z).
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FicerE 2.—Critical stress coefficients for thin-walled circular cylinders subjected to axial compression.
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Fi16uRE 3.—Comparison of test results with design curves recommended for eylinders with elamped edges, (Data from references 5 £ 9.)

For long eylinders the buckling stress is considerably
below the theoretical buckling stress, the amount of the
discrepancy depending on the ratio of radius to wall thickness.
For very short cylinders the values of the critical
stresses approach those for flat plates (simply supported
ends, k,=1; clamped ends, k,=4), for which the agreement
between theoretical and experimental results is known to be
good. The general trend of each empirical curve is similar
to that of the theoretical curve, indicating the existence of a
certain degree of correlation between theory and test data.

At large values of Z, the curves for k, become straight
lines given by the formula

k.=1.150Z ®)
where C depends on the ratio of radius to wall thickness of

the e¢ylinders in the manner shown in figure 4. From
equations (7} and (8) the following expression for the

critical stress is obtained
or=CE+ ©

Equations (8) and (9) may be used when the Iength of the
eylinder is more than about ¥ of the radius. The cmpirieal
curves of reference 10 indicate that the eritical stress Is sub-
stantially independent of length when the length is greater
than about ¥ of the radius. (This result may be checked

by noting that for Z£>0.5 ; the experimental curves of
figure 2 are substantially straight lines of unit. slope.)

In figure 5, the empirical formula of Kanemitsu and Nojima
(equation (6) of the present paper, the best previously
published formula for the buckling of cylinders) is plotied
in terms of the parameters &, and Z. The curves are cul
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off at those values of Z corresponding to the lower limits of
the range of dimensions within which the formula was in-
tended to apply. In general, for the range covered, the
curves are in reasonable agreement with the test data and
with the curves of the present paper for cylinders with
clamped edges. The practical importance of the present
approach lies in the fact that the use of the theoretical
parameters and the theoretical solutions as a guide in fairing
the curves permits the removal of the lower limits on these’
curves and also permits estimated curves 'to,be drawn for
the buckling stresses for simply supported cylincfers_, a'lthough
experimental data are available only for eylinders with
clamped edges.
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FIGURE 5.—Crifical stress ccefficients for thin-walled eylinders implied by the formula GE =0.16 (i—)l 3:—9 (;—) § given by Kanemitsu and Nojima in reference 9,



APPENDIX

THEORY FOR CYLINDERS BUCKLING UNDER AXIAL COMPRESSION

SYMBOLS
m positive integer
r radius of cylinder
¢ wall thickness of cylinder
w radial component of displacement, positive outward
x axial coordinate of cylinder
Y circumferential coordinate of cylinder
C coefficient appearing in ¢,= OE -

. . BB
D flexural stiffness of plate per unit length { 7+,
12(1 —p?
E Young’s modulus
L length of eylinder
Q operator on w defined in appendix
2 2

YA curvature parameter % V1—42 or (%) % VT—42
An coefficient of deflection function
k. critical-compressive-stress coefficient appearing in the

formula « =M} -
= L*

- 122*(m—1)* .
ﬂfm—[(m—1)2+ﬁ2]2+m (m—1)%k.
V..  deflection function defined in the appendix

L
Bzx

M half wave length of buckles in circumferential direction
u Poisson’s ratio
o, critical axial compressive stress

0 | O
ot
\ =5§4+ 2axzay2+a—y4

Vi

v~* the inverse of V* defined by V-Viw=w

THEORETICAL SOLUTION

The critical compressive stress at which buckling occurs
in a cylindrical shell may be obtained by solving the equa-
tion of equilibrium.

Equation of equilibrium.—The equation of equilibrium for
a slightly buclkled cylindrical shell under axial compression
is (reference 14)

a2

Dviw+ Ty 0¥ 20 (A1)
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where z is the coordinate in the axial direction and y is the

coordinate in the circumferential direction. Dividing
through equation (A1) by D gives
1227 72 O*w :
wt = IY V- 453:4 Rzﬁ 5)‘2=0 (A2)

where the dimensionless parameters Z and /, are defined by

2
Z:% —\/1 _#2
o L2
k.= =3
The equation of equilibrium may be represented by

- : Quw=0
where ¢ is defined by

1222 o
Q=7 v Stk a0

(A3)

Method of solution.—Equation (A2) may be solved by use
of the Galerkin method as outlined in reference 15. When
this method is applied, the deflection w is expressed in series
form as follows

b
w= Z=1 amTr (Aé)

The set of functions V, are chosen to satisfy the boundary
conditions but need not satisfy the equation of equilibrium.
The coefficients a,, are determined by the equations

)Y L
ﬁ ﬁ VO dz dy =0

In the present paper the deflection functions were chosen
to satisfy the following conditions on = at the ends of the
cylinder: For simply supported edges

m=1,2,8,...75 (A5)

_
ot =0
For clamped edges
w=aiu=0
or

Simply supported edges.—An expansion for w that is
sinusoidal in the circumferential direction and perfectly
general (sub]eet to the boundary conditions for simple
support) in the axial direction is

max

W=sin i—y >\ sin —p= (A6)
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where A is the half wave length of the buckles in the circum-
ferential direction. (Equation (A8) is equivalent to equa-
tion (A4) if

7Y . MEL

V.=sin N S

(AT)

Substitution of expressions (A6} and (A7) into equation (A5)
and integration over the limits indicated give

127%mt

=T B (B39

m?h = (§*+-m?2+ (m=1,2,3,...)
where

8=

bl

The minimum value of £, for a given Z is found by assum-
ing a value for m and minimizing &, with respect to 8. This
procedure is followed for various values of m until a minimum
k; is reached. TFigure 2 presents the theoretical ecritical
stress coeflicients for cylinders with simply supported edges
subjected to axial compression.

Clamped edges.—A procedure similar to that used for
cylinders with simply supported edges may be followed for
cylinders with clamped edges. The deflection function used
is the following series

549

71

Y San (A9)

—si os M L)wE <m+1>_f§)
W=smn (LOS L cos 7,

Each term of this series satisfies the conditions on w at the
edges. The function 17, is now defined as

7 —cin Y (cos B ET_ o Ut D
T .=sin N <COS cos I )

T (A10)

(m=1,2,3, .. .)

After the same operations are carried out for clamped
edges as those carried out for the case of simply supported
edges, the following equations result:

For m=1,
a1(2:111+.1[3) - (I;;JI;-;:O

ag(l_[g_z_lj_g)—a.il[izg
For m=3,4,5, ...,

An(M ot Mis) = Gpp M= Ggs M2 =0

For m=2,

(A11)

where
122*(m—1)* -
on— g, D
(m=1,2,3, ...

Mu=[(m—1)"+ P+

These equations have a solution if the following infinite determinant vanishes:

m=1 20,21, 0 —3M, 0 0 1] 0 0

m=2 0 AL+ AL, 0 — A, 0 0 0 0

m=3 - 0 M+ A 0 — AL 0 ] 0

m=4 0 —AL, 0 Af, AL, 0 — AL, 0 0

m=>5 0 0 — AL 0 M+ AL 0 —AL; 0 (A12)
m=06 0 0 0 — 0 M-+ AL, 0 — A

m=7 0 0 0 0 — 11 0 AL+ AL 0

m=38 0 0 0 0 0 — il 0 M+ AL,

If the rows and columns are rearranged the infinite determinant can be factored into the product of two infinite subdeter-
minants. The critical stresses may then be obtained from the following equation:

m= 20 AL, =M, 0 0
m=3 —M, AL+AL;  —3d;s 0
m=>5 0 —A,  AL4-A, —AfL
m="7 0 0 —AL; M AAL
m=2 0 0 0 0
m=4 0 0 0 0
m=06 0 0 0 0
m=3§ 0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
. . . —0 (A13)
Ut M, —AL 0 0
M, MM, —3M, 0
0 —M, MM, —3M
0 0 —M, M43y,
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The infinite subdeterminant involving terms with odd
subscripts corresponds to a symmetrical buckling pattern
(2 buckling pattern symmetrical about the plane perpendicu-
lar to and bisecting the axis of the cylinder). The infinite
subdeterminant involving terms with even subscripts cor-
responds to an antisymmetrical buckling pattern. For
brevity these subdeterminants will be referred to as the odd
determinant and the even determinant, respectively.

The first approximation is
Odd determinant:

Even determinant:
M+ 3M,=0 (A15)
The second approximation is
0Odd determinant:
M (M + AL+ MM =0 (A16)
Even determinant:

These equations show that for a selected value of the curva-
ture parameter Z the critical buckling stress of a cylinder
depends upon the circumferential wave length. Since a
structure buckles at the lowest stress at which instability
can occur, k, is minimized with respect to the wave length
by substituting values of 8into the equations until the mini-
mum £, can be obtained from a plot of k, against 8. For a
given Z the lower of the two values obtained from equations
(A14) and (A15) is the first approximation of the critical
buckling stress and, similarly, the lower of the two values of
I, obtained from equations (A16) and (A17) is the second
approximation of the critical buckling stress.

Figure 2 presents the theoretical critical stress coefficients
for eylinders with elamped edges in axial compression as ob-
tained from the second approximation, together with the
exact curve for the case of simply supported edges. Although
this solution is an upper-limit solution, the second approxi-
mation for the critical stress coefficient of a cylinder with
clamped edges must be very close to being exact for inter-
mediate and large values of Z because it is almost identical
with the exact solution for a cylinder with simply supported
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edges, and the critical stress of a cylinder with clamped edges
cannot be less than the critical stress for a cylinder with
simply supported edges. For values of Z approaching
zero, the accuracy of the second approximation is indicated
by the fact that it coincides with the known exsct solution
(k.=4) for a long flat plate with clamped edges.
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